
Recent Developments to Improve Recent Developments to Improve
Scalability of Sparse Direct SolverScalability of Sparse Direct Solver

X. Sherry Li
Lawrence Berkeley National Laboratory

PARA’06 Workshop
June 19, 2006

PARA06 2

IntroductionIntroduction

Sparse direct solvers are robust and reliable, but not
tera/peta-scale friendly. Why?
� Irregular, indirect memory access
� Computational dependency
� High communication-to-computation ratio (latency-bound)
� Architectural trend: wider gap between processor and

interconnect speeds

NEW DEVELOPMENTS:
Switch-to-dense
� Reduce indirect addressing and communication

Parallel symbolic factorization [Grigori, Demmel, L.]
� Improve memory scalability

Optimal complexity sparse factorization [Gu, Xia, L.]

PARA06 3

SuperLU_DISTSuperLU_DIST major stepsmajor steps

Static numerical pivoting: improve diagonal dominance
� Currently use MC64; Parallelization underway [J. Riedy]

Sparsity-preserving ordering
� Can use parallel Metis (ParMetis)

Symbolic factorization:
� Being parallelized (this talk)

Numerics: factorization, triangular solves, iterative
refinement
� Parallelized; More performance tuning, scaling

PARA06 4

SwitchSwitch--toto--densedense
Factors become denser and denser towards end …
Example: twotone (circuit), n = 120,750
Last dense block:
� size = 2250, density = 67%, flops >= 70%

L + U L + U, bottom part

PARA06 5

SwitchSwitch--toto--dense benefitdense benefit

IBM p575 Power5; 7.6 Gflops peak
Use 32 processors

Matrix n Dense
size

Density Dense
Flops

Mflops/P Time

Twotone
old

120,750 2905 56%

84% 3,020
81

1.80
2.91

Pre2
old

659,033

9269 90% 83% 4,557
1,004

12.41
16.26

Torso3

old
259,156 10,444 99% 19% 4,570

2,862
41.89
43.41

PARA06 6

ContentContent

Switch-to-dense
� Reduce indirect addressing and communication

Parallel symbolic factorization [Grigori, Demmel, L.]
� Improve memory scalability

Optimal complexity sparse factorization [Gu, Xia, L.]

PARA06 7

SymbolicSymbolic factorizationfactorization

Identify nonzero structure of L, U factors.

Complexity: greater than nnz(L+U), but much smaller
than flops(LU); Very fast in practice.

Why parallel?
� Matrix A may not fit in one processor.

Why difficult?
� Sequentiality: computation of i-th column/row depends on results

of the previous ccolumns/rows.

� Lower computation-to-communication ratio.

PARA06 8

Parallelizing symbolic factorizationParallelizing symbolic factorization

Goal:
Improve memory scalability, while maintaining
reasonable speedup.

Approach:
Use graph partitioning to reorder/partition matrix.
� ParMetis on structure of A + A’

Exploit parallelism given by this partition (coarse level)
and by a block cyclic distribution (fine level).
Identify dense separators, dense columns of L and rows
of U to decrease computation.

PARA06 9

MatrixMatrix partitionpartition

Separator tree
� Balanced tree with balanced data distribution
� Exhibits computational dependencies

� If node j updates node k, then j belongs to subtree rooted at k.

PARA06 10

MatrixMatrix distributiondistribution

P 2
P 0 P 1 P 3

P 2,3P 0,1

P 0,1,2,3

Algorithm
1. Assign all the processors to the root.
2. Distribute the root (1D block cyclic along the diagonal) to processors in the set.
3. Assign to each subtree half of the processors.
4. Go to Step 1 for each subtree which is assigned more than one processor.

PARA06 11

AlgorithmAlgorithm
1) Perform local symbolic factorization of leaf node
2) for each level from 1 to logP do

Let N(x:y) be node owned by myPE

/* inter-level computation */
Send / Receive necessary
Use received data to update

/* intra-level computation */
for each block (i:j) of node N

If myPE owns this block
Compute

Send / Rceive block (i:j) if necessary
Use received data to update

endfor
endfor

P 2 P 3

P 2,3

P 0,1,2,3

x y

left looking

right looking

level

1

2

0

F
C

D

C D

F

:),1:1(),1:1(:, −− xUxL
:),:(),:(:, yxUyxL

right looking

left looking

:),:(),:(:, jiUjiL

:),:1(),:1(:, yjUyjL ++

x

y

PARA06 12

ExperimentsExperiments

Goals:
Compare with sequential symbolic factorization algorithm in
SuperLU_DIST (SFseq).
Analyze memory usage and parallel runtime.

Test Matrices:
3D regular grid model problems
Unsymmetric matrices: circuit simulation, fluid flow

Machine:
IBM Power3, RS/6000

PARA06 13

3D 3D regularregular gridgrid (1/2)(1/2)

Laplacian, cubic grid of size 90, nnz = 7.9M
Memory usage:
� SFseq (symbolic sequential), SFpar (symbolic parallel)
� Entire solvers: SLU_SFseq, SLU_SFpar

Memory needs(MB) P=8 P=32 P=128

Nnz(L+U)*10^6 1408.4 1498.1 1588.4

SFseq
SFpar (max)
SFseq / SFpar

452.1
44.9
10.1

461.9
16.7
27.6

541.4
14.2
38.1

Factor (max) 1540.0 403.6 108.0

SLU_SFseq
SLU_SFpar

2081.8
1723.4

941.1
521.5

673.3
187.9

PARA06 14

3D 3D regularregular gridgrid (2/2)(2/2)

Runtime in seconds

0

10

20

30

40

50

60

70

P = 2x4 P = 4x8 P = 8x16

parMetis
Sfseq
Sfpar

PARA06 15

Circuit simulation (1/1)Circuit simulation (1/1)
Pre2: n = 659,033, nnz = 5.9M, 92M fill-ins using parMetis on
one processor
Memory usage:
� SFseq (symbolic sequential), SFpar (symbolic parallel)
� Entire solvers: SLU_SFseq, SLU_SFpar

Memory needs(MB) P=8 P=32 P=128

Nnz(L+U)*10^6 120.1 145.7 138.6

SFseq
SFpar (max)
SFseq / SFpar

122.0
31.5
3.9

133.0
11.0
12.1

126.4
7.2

17.6

Factor (max) 167.6 52.5 14.2

SLU_SFseq
SLU_SFpar

415.3
347.9

239.7
157.6

159.0
96.5

PARA06 16

Circuit simulation (2/2)Circuit simulation (2/2)

Runtime in seconds

0

1

2

3

4

5

6

7

8

9

P = 2x4 P = 4x8 P = 8x16

parMetis
Sfseq
Sfpar

PARA06 17

Fluid flow (1/1)Fluid flow (1/1)
bbmat: n = 38,744, nnz = 1.8M, 34M fill-ins using ParMetis on
one processor
Memory usage:
� SFseq (symbolic sequential), SFpar (symbolic parallel)
� Entire solvers: SLU_SFseq, SLU_SFpar

Memory needs(MB) P=8 P=32 P=128

Nnz(L+U)*10^6 35.0 36.7 36.6

SFseq
SFpar (max)
SFseq / SFpar

35.6
6.7
5.3

36.5
3.0

12.2

40.7
1.6

25.4

Factor 44.7 13.1 4.0

SLU_SFseq
SLU_SFpar

86.4
58.4

52.1
19.5

45.3
8.0

PARA06 18

Fluid flow (2/2)Fluid flow (2/2)

Runtime in seconds

0

0.5

1

1.5

2

2.5

P = 2x4 P = 4x8 P = 8x16

parMetis
Sfseq
Sfpar

PARA06 19

ContentContent

Switch-to-dense
� Reduce indirect addressing and communication

Parallel symbolic factorization [Grigori, Demmel, L.]
• Improve memory scalability

� Optimal complexity sparse factorization [Gu, Xia, L.]

PARA06 20

Fast solverFast solver
In the spirit of fast multipole, but for matrix inversion
Model problem: discretized system Ax = b from certain
PDEs, e.g., 5-point stencil on k x k grid, n = k^2
Nested dissection ordering gave optimal complexity in
exact arithmetic [Hoffman/Martin/Ross]
� Factorization cost: O(k^3)

PARA06 21

Exploit lowExploit low--rank propertyrank property

Consider top-level dissection:
S is full
� Needs O(k^3) to find u3

But, off-diagonal blocks of S has low numerical ranks (e.g. 10~15)
� U3 can be computed in O(k) flops

Generalize to multilevel dissection: all diagonal blocks corresp. to
the separators have the similar low rank structure
Low rank structures can be represented by hierarchical semi-
separable (HSS) matrices [Gu et al.] (… think about SVD)
Factorization complexity … essentially linear
� 2D: O(p k^2), p is related to the problem and tolerance (numerical rank)
� 3D: O(c(p) k^3), c(p) is a polynomial of p

2
1

22321
1

113133

3

2

1

3

2

1

333231

2322

1311

0
0

fAAfAAfuS

f
f
f

u
u
u

AAA
AA
AA

−− −−=

=

PARA06 22

Results of the model problemResults of the model problem

Flops and times comparison

PARA06 23

Research issuesResearch issues

Analysis of 3D problems, and complex geometry
Larger tolerance � preconditioner (another type of ILU)
� If SPD, want all the low rank structures to remain SPD

Performance tuning for many small dense matrices (e.g.
size 10~20)
Need a hybrid solver; find a good switching level
� Benefits show up only for large enough mesh

Local ordering of unknowns
� Node ordering within a separator affects numerical ranks

Parallelization

PARA06 24

Summary of resultsSummary of results

Switch-to-dense
� Worthwhile if dense flops consistutes over 50%
� Up to 60% faster

Parallel symbolic factorization
� Memory: up to 25x reduction of symbolic fact.; up to 5x

reduction of the entire solver
� Time: up to 14x speedup of symbolic fact.; up to 20% faster of

the entire solver
Optimal complexity factorization
� Showed linear scaling

PARA06 25

Questions?Questions?

